A Sharkovsky Theorem for Vertex Maps on Trees

نویسنده

  • CHRIS BERNHARDT
چکیده

Let T be a tree with n vertices. Let f : T → T be continuous and suppose that the n vertices form a periodic orbit under f . We show: (1) (a) If n is not a divisor of 2k then f has a periodic point with period 2k. (b) If n = 2pq, where q > 1 is odd and p ≥ 0, then f has a periodic point with period 2pr for any r ≥ q. (c) The map f also has periodic orbits of any period m where m can be obtained from n by removing ones from the right of the binary expansion of n and changing them to zeroes. (2) Conversely, given any n, there is a tree with n vertices and a map f such that the vertices form a periodic orbit and f has no other periods apart from the ones given above.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sharkovsky Theorem: A Natural Direct Proof

We give a proof of the Sharkovsky Theorem that is selfcontained, short, direct and naturally adapted to the doubling structure of the Sharkovsky ordering.

متن کامل

On the extremal total irregularity index of n-vertex trees with fixed maximum degree

In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...

متن کامل

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009